Expectations

Christopher D. Carroll

Johns Hopkins University
ccarroll@jhu.edu

Keynote Address
Federal Reserve Bank of St Louis
Conference on Household Balance Sheets
February 2013
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
In Aristotle’s (350 BC) list of common human logical errors:

\textit{Attributing characteristics of the whole to the parts}

Google search for examples yields:
- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
The ‘Fallacy of Division’

In Aristotle’s (350 BC) list of common human logical errors:

Attributing characteristics of the whole to the parts

Google search for examples yields:

- America is rich
- Chris Carroll is American
- Chris Carroll is rich!

Clearly a fallacy!
Before 2008, “Representative Agent” models dominant:

Argument:
- Debt is owed to someone
- One person’s debt is another person’s asset
- All that matters is aggregate net worth

Advantage: Representative Agent models are simple
Of course, as always, some annoying dissenters from the gospel
Before 2008, “Representative Agent” models dominant:

Argument:

- Debt is *owed* to someone
- One person’s debt is another person’s asset
- All that matters is *aggregate* net worth

Advantage: Representative Agent models are *simple*
Of course, as always, some annoying dissenters from the gospel
Before 2008, “Representative Agent” models dominant:

Argument:
- Debt is *owed* to someone
- One person’s debt is another person’s asset
- All that matters is *aggregate* net worth

Advantage: Representative Agent models are *simple*
Of course, as always, some annoying dissenters from the gospel
Before 2008, “Representative Agent” models dominant:

Argument:

- Debt is *owed* to someone
- One person’s debt is another person’s asset
- All that matters is *aggregate* net worth

Advantage: Representative Agent models are *simple*

Of course, as always, some annoying dissenters from the gospel
Before 2008, “Representative Agent” models dominant:

Argument:

- Debt is *owed* to someone
- One person’s debt is another person’s asset
- All that matters is *aggregate* net worth

Advantage: Representative Agent models are *simple*
Of course, as always, some annoying dissenters from the gospel
Before 2008, “Representative Agent” models dominant:

Argument:
- Debt is owed to someone
- One person’s debt is another person’s asset
- All that matters is aggregate net worth

Advantage: Representative Agent models are simple

Of course, as always, some annoying dissenters from the gospel
Macroeconomics Is A Primitive Discipline

Before 2008, “Representative Agent” models dominant:

Argument:
- Debt is *owed* to someone
- One person’s debt is another person’s asset
- All that matters is *aggregate* net worth

Advantage: Representative Agent models are *simple*
Of course, as always, some annoying dissenters from the gospel
Don’t Worry, Be Happy?
Debt Worrywarts ≈ Believers in Mayan Apocalypse

Shaded areas indicate US recessions.
2013 research.stlouisfed.org
Countries, States, Households: Debt Runup Mattered

If \(i \) had greater debt runup than \(j \) before crisis, then (in the crisis) \(i \) suffered worse decline than \(j \), where \(i, j: \)

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
If \(i \) had greater debt runup than \(j \) before crisis, then (in the crisis) \(i \) suffered worse decline than \(j \), where \(i, j \):

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
Countries, States, Households: Debt Runup Mattered

If i had greater debt runup than j before crisis, then (in the crisis) i suffered worse decline than j, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
If i had greater debt runup than j before crisis, then (in the crisis) i suffered worse decline than j, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
Countries, States, Households: Debt Runup Mattered

If \(i \) had greater debt runup than \(j \) before crisis, then (in the crisis) \(i \) suffered worse decline than \(j \), where \(i, j \):

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
If i had greater debt runup than j before crisis, then (in the crisis) i suffered worse decline than j, where i, j:

- Countries (International Monetary Fund (2012))
- States/Localities in U.S. (Mian, Rao, and Sufi (2011))
- Households (Dynan (2012))

Prima facie evidence that balance sheet conditions matter (?).
The Great Recession was particularly severe in economies that experienced a larger run-up in household debt prior to the crisis.
Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
 - People Differ in *something* Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!
Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
 - People Differ in *Something* Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!
Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
- People Differ in *Something* Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!
Minimal Requirements of a Useful Story

- Imperfect Foresight
 - Simplest Model: Imperfect Unemployment Insurance
- People Differ in *Something* Other Than Employment
 - Otherwise All Balance Sheets Will Be Identical!
Ingredients

Standard elements: Time-separable CRRA utility, optimization, etc

Elements to highlight:

\[\beta \quad - \quad \text{Time Discount Factor} \]
\[\mu \quad - \quad \text{Expected Unemployment Risk} \]
\[G \quad - \quad \text{Expected Income Growth Rate} \]
\[\kappa \quad - \quad \text{Expected Credit Availability} \]
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:
- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It *does* matter (for spending) *who* has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:
- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It *does* matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:
- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:

- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
There are Two Kinds of People ...

... Debtors and Creditors

Heterogeneity in targets is matchable in various ways:
- Young vs Old
- Optimist vs Pessimist
- Risk-Averse vs Risk-Tolerant

Assertion: Doesn’t Matter (much)!

My Choice: Time preference rate (patient vs impatient)

Crucial point: It does matter (for spending) who has the wealth
Setup

- Equal % of Aggregate Income to Patient and to Impatient
- All debt d belongs to one type, d^{poor}
 - Cynamon and Fazzari (2013)
 - Debt rise concentrated in bottom 95 %
- Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$
Setup

- Equal % of Aggregate Income to Patient and to Impatient
- All debt d belongs to one type, d_{poor}
 - Cynamon and Fazzari (2013)
 - Debt rise concentrated in bottom 95 %
- Aggregate net worth is $a = 0.5(a_{\text{rich}} - d_{\text{poor}})$
Setup

- Equal % of Aggregate Income to Patient and to Impatient
- All debt d belongs to one type, d_{poor}
 - Cynamon and Fazzari (2013)
 - Debt rise concentrated in bottom 95 %
- Aggregate net worth is $a = 0.5(a_{rich} - d_{poor})$
Setup

- Equal % of Aggregate Income to Patient and to Impatient
- All debt d belongs to one type, d_{poor}
 - Cynamon and Fazzari (2013)
 - Debt rise concentrated in bottom 95%
- Aggregate net worth is $a = 0.5(a_{rich} - d_{poor})$
Setup

- Equal % of Aggregate Income to Patient and to Impatient
- All debt d belongs to one type, d^{poor}
 - Cynamon and Fazzari (2013)
 - Debt rise concentrated in bottom 95%
- Aggregate net worth is $a = 0.5(a^{\text{rich}} - d^{\text{poor}})$
Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Calibration: Match Aggregate Statistics

In 2001
- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Calibration: Match Aggregate Statistics

In 2001

- Aggregate wealth-to-income ratio
- Aggregate debt-to-income ratio d

Requires difference in “patience” of about 8 percent a year

Other parameter values taken from Carroll and Toche (2009)

To match: Rise from $d_{2001} \approx 1$ to $d_{2007} = 1.3$
Construct three experiments all of which satisfy:

- \(d \) went from \(d_{2001} \approx 1 \) to \(d_{2007} \approx 1.3 \)
 - So, \(d^{poor} \) increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008
Construct three experiments all of which satisfy:

- d went from $d_{2001} \approx 1$ to $d_{2007} \approx 1.3$
- So, d_{poor} increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008
Construct three experiments all of which satisfy:

- d went from $d_{2001} \approx 1$ to $d_{2007} \approx 1.3$
- So, d_{poor} increased from 2 to 2.6
- Expectation reverts to 2001 value in 2008
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:

- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
Three Experiments

1. Belief in a Credit Boom
2. Belief that Unemployment Risk Has Declined
3. Belief in Faster Growth

In my experiments, none of these beliefs is true:
- Unemployment Remains Constant
- Growth Remains Constant
- Credit Availability Does Not Change

In 2008, the “belief bubble” collapses (returns to 2001 values)
1. Find linear increase in ς such that $d_{2007} = 1.3$

2. Assume abrupt reversal of credit easing: $\varsigma_{2008} = \varsigma_{2001}$
Find linear increase in ς such that $d_{2007} = 1.3$

Assume abrupt reversal of credit easing: $\varsigma_{2008} = \varsigma_{2001}$
Belief in Gradual Expansion of Credit Availability

Saving Rate

Time

-0.1

0.1

2001

2007

- More patient group
- Less patient group
Believed Unemployment Risk Declines in 2001

![Graph showing saving rate over time with dots indicating different patient groups.]

- More patient group
- Less patient group

Time
-0.1
0.1
Saving Rate
2001 2007
Beliefs About Aggregate Growth Improve in 2001

Saving Rate

-0.1
0.1

Time

2001 2007

Less patient group
More patient group
Aggregate Saving in the Three Expectations Cycles

Saving Rate

Time

-0.1

0.1

2001

2007

E[σ] Cycle (Credit)

E[U] Cycle (Unemp Risk)

E[Γ] Cycle (Growth)
In all three experiments:

- In Short Run, Agg Dynamics Are Driven by Changes in E
- Big diffs Across Groups in response to expectations changes
Expectations Drive Outcomes

In all three experiments:

- In Short Run, Agg Dynamics Are Driven by Changes in E
- Big diffs Across Groups in \textit{response} to expectations changes
It matters *whose* expectations change

- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations
From Model

- It matters *whose* expectations change
- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations
It matters *whose* expectations change
- Debtors more responsive to credit, unemployment fears
- Creditors much more responsive to growth expectations
For Data Collection

- Balance Sheet Surveys:
 - Ask Questions About Expectations!
 - We Really Need to Measure Saving Rates By Group!
For Data Collection

- Balance Sheet Surveys:
 - Ask Questions About Expectations!
- We Really Need to Measure Saving Rates By Group!
For Data Collection

- Balance Sheet Surveys:
 - Ask Questions About Expectations!
- We Really Need to Measure Saving Rates By Group!

Write the consumption function contingent on the parameter values prevailing in year t as, for example, $c_t^{\text{poor}}(m_t^{\text{poor}}), c_t^{\text{rich}}(m_t^{\text{rich}})$, and so on.

We want to assume a smooth change in the ς parameter over time:

- ς parameter of $\varsigma_{2002} = \varsigma_{2001} + \eta, \varsigma_{2003} = \varsigma_{2001} + 2\eta$ and so on through 2007.

Given this path of ς we have the sequence of consumption functions $c_{2002}^{\text{poor}}, c_{2003}^{\text{poor}},$ and so on.

Then, for example, starting from the steady-state $a_{2001}^{\text{poor}} = -d_{2001}^{\text{poor}}$ values found in the calibration exercise above, we have a path of values of a_{2002}, a_{2003} and so on from the dynamic budget constraint and from the series of c_{poor} functions.

The idea, then, is just to find the η such that $a_{2007}^{\text{poor}} = -2.6$.
Unless otherwise indicated, parameter values match those used in Carroll and Toche (2009).

Given these calibrations, we find the combination of assumptions about β_{poor} and β_{rich} such that the steady state of the model predicts that $a = a_{2001}$ and $a_{\text{poor}} = -2$ (which is the same as $d = 1$ and $d_{\text{poor}} = 2$).
so

\[a^{\text{rich}} = 2a + d^{\text{poor}} \] \hspace{1cm} (1)

Baseline calibration to 2001:

\[a_{2001} \approx 5 \]
\[d_{2001} \approx 1 \]
\[\Rightarrow d_{2001}^{\text{poor}} \approx 2 \]

\[\Rightarrow a_{2001}^{\text{rich}} = 12 \]
Including Post-2007 Data

Shaded areas indicate US recessions.
2013 research.stlouisfed.org
Including Post-2007 Data