Introduction

• Factors of production and factor markets
• Factor income
• Derived demand for factors of production
• Productivity theory and factor markets
 – Marginal revenue product
 – Marginal resource cost
 – Profit maximization
Introduction

• Productivity theory and factor markets
 – Effect of imperfect competition in product markets
 – Effect of imperfect competition in labor markets
 – Monopsony
• Problems with productivity theory in factor markets
• Government intervention in factor markets: minimum wage
Factors of Production

- Any resource used to produce goods and services
 - Labor
 - Land and other natural resources
 - Capital (physical and human)
- Factors of production earn income from the ongoing selling of their services
- **Factor markets** = markets where factors of production are traded
 - Households are suppliers
 - Firms are demanders
Importance of Factor Markets

• Determine prices of resources

• Allocate productive resources to producers

• Help ensure resources are used efficiently
Factor Income

• Sale of factors of production usually generates largest share of most people’s incomes

• **Factor distribution of income** = how total income in the economy is divided among labor, land, and capital
Factor Distribution of Income, 2014

- Compensation of Employees: 60.2
- Proprietors' Income: 13.5
- Interest: 13.1
- Corporate Profits: 4.1
- Rents: 9.1

Source: Bureau of Economic Analysis
Derived Demand for Factors of Production

- Demand for a factor of production is derived from demand for the good/service produced from that resource

- Distinguishes factor markets from goods markets
Productivity Theory and Factor Markets

• Initially assume product market and resource market are both perfectly competitive

• Use labor market as example

• **Marginal revenue product (MRP)** = change in total revenue resulting from a change in the quantity of labor
 – Also called value of marginal product (VMP)
Marginal Revenue Product

- \(MRP = \frac{\Delta TR}{\Delta Q_L} = \frac{TR_{\text{new}} - TR_{\text{old}}}{Q_{L_{\text{new}}} - Q_{L_{\text{old}}}} \)

- If factor market is competitive, \(MRP = MPL \times P \) (product price)

- \(MRP \) curve represents a firm’s demand for labor
 - Downward sloping due to diminishing returns to labor
MRP Example

<table>
<thead>
<tr>
<th>Q_L</th>
<th>TP (output)</th>
<th>MPL</th>
<th>P</th>
<th>TR</th>
<th>MRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
<td>$5</td>
<td>$60</td>
<td>$60</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>14</td>
<td>$5</td>
<td>$130</td>
<td>$70</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>12</td>
<td>$5</td>
<td>$190</td>
<td>$60</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>10</td>
<td>$5</td>
<td>$240</td>
<td>$50</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>8</td>
<td>$5</td>
<td>$280</td>
<td>$40</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>6</td>
<td>$5</td>
<td>$310</td>
<td>$30</td>
</tr>
</tbody>
</table>
• MRP affected by diminishing returns to labor
Marginal Resource Cost

- **Marginal resource cost** (MRC) = change in total cost resulting from a change in the quantity of labor

\[
MRC = \frac{\Delta TC}{\Delta Q_L} = \frac{(T_{C_{\text{new}}} - T_{C_{\text{old}}})}{(Q_{L_{\text{new}}} - Q_{L_{\text{old}}})}
\]

- If factor market is competitive, MRC = wage (w)
Profit-maximizing Quantity of Labor

• Similar to determining profit-maximizing quantity of output
 – MR = MC

• Maximizing rule: MRP = MRC

• If factor market is competitive, MRP = w
Profit-maximizing Example

<table>
<thead>
<tr>
<th>Q_L</th>
<th>TP (output)</th>
<th>MPL</th>
<th>P</th>
<th>TR</th>
<th>MRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
<td>$5</td>
<td>$60</td>
<td>$60</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>14</td>
<td>$5</td>
<td>$130</td>
<td>$70</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>12</td>
<td>$5</td>
<td>$190</td>
<td>$60</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>10</td>
<td>$5</td>
<td>$240</td>
<td>$50</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>8</td>
<td>$5</td>
<td>$280</td>
<td>$40</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>6</td>
<td>$5</td>
<td>$310</td>
<td>$30</td>
</tr>
</tbody>
</table>

- If wage = $60, profit-maximizing quantity of labor is 3 workers
- If wage = $40, profit-maximizing quantity of labor is 5 workers
Demand and Supply Model

[Graph showing supply (S) and demand (D) curves with price ranging from $0 to $80 and quantity ranging from 2 to 6.]
Demand and Supply Model

![Graph showing the demand and supply model. The supply curve (S) and the demand curve (D) intersect at a price point.]
Effect of Imperfectly Competitive Product Markets

<table>
<thead>
<tr>
<th>Q_L</th>
<th>TP (output)</th>
<th>MPL</th>
<th>P</th>
<th>TR</th>
<th>MRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
<td>$5.80</td>
<td>$67.20</td>
<td>$67.20</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>14</td>
<td>$5.60</td>
<td>$140.40</td>
<td>$73.20</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>12</td>
<td>$5.40</td>
<td>$197.60</td>
<td>$57.20</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>10</td>
<td>$5.20</td>
<td>$240.00</td>
<td>$42.40</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>8</td>
<td>$5.00</td>
<td>$268.80</td>
<td>$28.80</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>6</td>
<td>$4.80</td>
<td>$285.20</td>
<td>$16.40</td>
</tr>
</tbody>
</table>

- If wage = $60, profit-maximizing quantity of labor is 2 workers
- If wage = $40, profit-maximizing quantity of labor is 4 workers
Effect of Imperfectly Competitive Labor Markets

- Case of monopsony
 - **Monopsony** = single demander of labor
 - Classic example: one-company town
 - Other examples:
 - local fire department (one employer demands workers with certain skills)
 - Major league baseball (reserve clause limited player mobility)

- To hire more workers, business must offer higher wage
 - MRC curve is upward sloping
Profit Maximization in Monopsony

• Monopsony still maximizes profits when hiring at $\text{MRP} = \text{MRC}$

• For monopsony, $\text{MRC} > w$
 – $\text{MRP} = w$ does not apply for monopsony as in perfect competition
Monopsony Model

\[Q_m \]

\[Q_L \]

\[w \]

\[w_m \]

\[Q_m^* \]

\[Q_L \]

\[MRP \]

\[MRC \]

\[S \]
Monopsony vs. Perfect Competition

Monopsonistic exploitation

w_{pc}

w_{m}

Q_m

Q_{pc}

Q_L
Problems with Productivity Theory in Factor Markets

• In real world, substantial differences exist between prices of factors that likely have similar MRP
 – Wage gaps by gender and race
• In real world, some resources are not fully employed and may receive prices higher than their MRP or market-clearing levels
Median Weekly Earnings by Gender and Race, 2014

<table>
<thead>
<tr>
<th></th>
<th>White Men</th>
<th>Women (all races/ethnicities)</th>
<th>African American (men and women)</th>
<th>Hispanic (men and women)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$948</td>
<td>$754</td>
<td>$682</td>
<td>$651</td>
</tr>
</tbody>
</table>

*For those aged 25 and over
Source: Bureau of Labor Statistics
Causes of Wage Differentials and High Wages

• Wage differences may result from compensating for “unattractive” jobs, differences in innate talents, and differences in human capital
 – Productivity theory can account for these issues

• Market power
 – Unionization can push wages above market-clearing levels and above wages in non-unionized sectors
Causes of Wage Differentials and High Wages

• Efficiency wages
 – In jobs where workers cannot be supervised easily, wages are above equilibrium to promote higher productivity of workers, which can create wage dispersion and unemployment

• Discrimination
 – Some workers may be discriminated against, which lowers their wages relative to other workers and their employment opportunities
Government Intervention: Minimum Wage

• Purpose: increase earnings of low-income workers

• Predicted simple outcome: increase in wage above equilibrium causes unemployment for some and higher wages for those still employed

• Negative effect depends in part on elasticity of demand for labor and structure of labor market
 – More inelastic, less unemployment
 – Perfectly competitive vs. monopsonistic
Minimum Wage in Perfect Competition

Covered Sector

Unemployment

Uncovered Sector
Minimum Wage in Monopsony

- w: Wage
- Q: Quantity
- w^*: Wage
- w_{min}: Minimum wage
- Q^*_m: Quantity supplied
- Q_{min}: Quantity demanded
- Q_L: Quantity of labor
- MRC: Marginal Revenue Cost
- S: Supply
- MRP: Marginal Revenue Product
Wrap Up

Questions?

Grant Black
Center for Entrepreneurship and Economic Education
University of Missouri-St. Louis
blackgc@umsl.edu
314-516-5248