Constructing the Post-War Housing Boom

Matthew Chambers, Towson University Carlos Garriga, FRB of St. Louis Don Schlagenhauf, FRB of St. Louis

Interaction between Housing and the Economy, Humbolt University, Germany

June 2015

Postwar Housing Boom 1940-60: Ownership and Prices

Source: Shiller HPA and U.S. Census

Objective

- Objective: Understanding the positive co-movement between home ownership and house prices in the postwar housing boom
- Methodology: Use a multi-sector equilibrium life-cycle model with housing tenure choice
- Decomposition: Identify the contribution of relevant factors
- Limitation: Focus on levels and not the transition

Literature: Focus ownership and little on prices

- 1. Demographics factors: Chevan (1989) estimates 50%
- 2. Income Growth: Kain (1983) and Katona (1964) accounts for most of it
- 3. Government Regulation of Housing markets
 - 3.1 Regulation of Housing Finance: Yearn (1976), Chambers, Garriga, and Schlagenhauf (2009) estimates 50%
 - 3.2 Assistance programs (VA): Fetters (2010) estimates 10%
 - 3.3 Taxation: Rosen and Rosen (1980) estimates 25%

Summary Findings

- Model performance: The baseline economy rationalizes the co-movement in prices and ownership.
- Main story: The model identifies a relative sectorial productivity change of the goods sector over real estate as a key driver of the housing boom.
- Decomposition: Relative contribution of each factor

Contribution	Ownership (%)	House Prices (%)
Demographics	5-8	1-2
Income risk	12-57	0-1
Govn't Policy	3-4	0-14
Housing finance	5-7	1-1.5

I) Summary of Relevant Factors

1) House Prices and Construction Cost Indices

 \Rightarrow House prices are in-line with construction costs

2) Demographics

2) Demographics: Actual and Hypothetical Ownership

	Ownership	Total
Expression	Rate	Change
$\sum_{i \in I} \mu_{1940}^i \pi_{1940}^i$	44.53	
$\sum_{i \in I} \mu_{1960}^{i} \pi_{1960}^{i}$	65.57	21.04
$\sum_{i \in I} \mu_{1960}^{i} \pi_{1940}^{i}$	47.47	2.94
$\sum_{i \in I} \mu_{1940}^{i} \pi_{1960}^{i}$	62.13	17.60

Data Source: United States Public Use Microdata Samples (IPUMS)

3) Earning Profile by Education: 1940-60

3) Reduction Income Risk by Education: 1940-60

4) Government Regulation of Housing Finance

 Prior Great Depression: The typical mortgage contract was characterized by

- a maturity of less than ten years,
- a loan-to-value ratio of about 50 percent,
- interest only with a balloon payment at expiration
- Regional credit markets

Post Great Depression (1940's Boom): FHA introduces fixed rate mortgage

- Ionger maturity 20 to 30 years
- higher LVT ratio (i.e. 80 percent, or 100 percent VA)
- constant repayment over length loan (self-amortizing)
- National credit markets (
 decline in mortgage rates)

4) Mortgage Market Regulation: Interest rates

4) Mortgage Market Regulation: Lending Conditions

Mortgage Duration

Loan-to-Value Ratio

Period	LI	Comm. Bank	S & L	LI	Comm.Bank	S & L
1920-24	6.4	2.8	11.1	47	50	58
1925-29	6.4	3.2	11.2	51	52	59
1930-34	7.4	2.9	11.1	51	52	60
1935-39	16.4	11.4	11.4	63	63	62
1940-44	21.1	13.1	13.1	78	69	69
1945-47	19.5	12.3	14.8	73	75	75

Source: Grebler, Blank, and Winnick (1956)

4) Mortgage Markets: Government Programs

Table 3: The Role of Government Mortgage Debt for Home Mortgages: 1935 to 1953 (in millions)

				Total	FHA&VA Home
	FHA	VA	FHA+VA	Home Mortg	Mortg(%tot)
1936	203		203	15,615	1.3
1940	2349		2349	17,400	13.5
1945	4078	\$500	4578	18,534	24.7
1946	3692	2,600	6292	23,048	27.3
1948	5269	7,200	12469	33,251	37.5
1950	8563	10,300	18863	45,019	41.9
1952	10770	14,600	25370	58,188	43.6
		Source: C	rebler Blank	and Winnick (1)	056)

Source: Grebler, Blank, and Winnick (1956)

5) Government Policy: Income Taxation

II) The Nature of the Co-movement of Ownership and House Prices: Simple Equilibrium Model

Environment

- Two sector model with housing
- ► Agents are heterogeneous in their labor ability $\varepsilon \in [\underline{\varepsilon}, \overline{\varepsilon}]$, and the distribution is uniform $\varepsilon^{\sim} U(\underline{\varepsilon}, \overline{\varepsilon}) \equiv f(\varepsilon)$.
- Commodities: c ∈ R₊ and h ∈ {0, h}. Renters consume zero housing and homeowners consume a positive amount.

• Preferences $(\gamma > 0)$:

$$u(c,h)=c(\gamma+h),$$

CRS goods sector and housing

$$C = z_c N_c$$
,

$$H = z_h N_h$$
.

Tenure Decision

The optimization problem for the consumer is

$$v(\varepsilon) = \max_{h} \{ u^{rnt}(c,0), u^{own}(c,\overline{h}) \},\$$

s.t. $c = w\varepsilon - (p\overline{h} + \phi),\$
 $c = w\varepsilon$

The cut-off income ε^* for ownership is

$$arepsilon^* \geq rac{p}{w}(\gamma+\overline{h}) + rac{\phi}{w\overline{h}}.$$

Determinants of ownership

- 1. House prices and wage income (p/w)
- 2. Minimum size of the house (\overline{h})
- 3. Transaction costs (ϕ)
- 4. Family size (γ)

Equilibrium Prices

Goods sector:

$$\max_{N_c} z_c N_c - w N_c,$$

$$w = z_g$$

Housing sector:

$$\max_{N_h} p z_h N_h - w N_h,$$
$$p = \frac{z_c}{2}.$$

$$p = - \frac{1}{z_h}$$

Equilibrium Homeownership

 Connection of key variables necessary to understand the co-movement

$$HOR = \int_{\varepsilon^*}^{\overline{\varepsilon}} U(\underline{\varepsilon}, \overline{\varepsilon}) d\varepsilon = \frac{1}{\overline{\varepsilon} - \underline{\varepsilon}} \left[\overline{\varepsilon} - \left(\frac{(\gamma + \overline{h})}{z_h} + \frac{\phi}{z_c \overline{h}} \right) \right].$$

 Increases in the productivity of either sector generates increases the homeownership rate, but only one constellation works. Define

$$\Delta w = rac{w'}{w} = rac{z_c'}{z_c} = \Delta z_c$$
 $\Delta p = rac{z_c'}{z_c} rac{z_h}{z_h'} = rac{\Delta z_c}{\Delta z_h}.$

Co-movement

The co-movement depends on the relative productivity change.

• Symmetric productivity $(\Delta z_c = \Delta z_h)$:

 $\Delta HOR > 0$

$$\Delta p = rac{\Delta z_c}{\Delta z_h} = 0$$

• Asymmetric productivity $(\Delta z_c \neq \Delta z_h \ge 0)$:

 $\Delta HOR > 0$

$$\Delta p = rac{\Delta z_c}{\Delta z_h} > 0$$

only when $\Delta z_c > \Delta z \Rightarrow \Delta w > \Delta p$

Supportive Evidence: Sectorial Data

Supportive Evidence: Productivity Differences

III) Quantitative Analysis

Housing Model

- Multi-sector growth model (goods and housing)
- Life Cycle Households
 - Income risk, and uncertain life expectancy
 - Choices: Consumption, savings, housing purchase and mortgage choice
- Mortgage Brokers: Provide long-term lending contracts
- Government: Progressive income taxation, housing policy, and social security

Characteristics of Houses or Dwellings

- Lumpy with minimum size
- Consumption/Investment good
- Utility depends on consumption and housing services
- Rental market for housing services
- Depreciation depends on utilization
- Non-convex adjustment costs

Mapping the Model and the Data (I)

Preferences:

$$u(c,d) = \frac{\left[\gamma c^{-\rho} + (1-\gamma)d^{-\rho}\right]^{-\frac{1-\sigma}{\rho}}}{1-\sigma}$$

Technologies:

$$Y_c = z_c K_c^{0.3} N_c^{0.7}$$

$$Y_h = z_h K_h^{0.12} N_h^{0.88}$$

Model Fit: 1935-40

Home Ownership by Age (%)

	Da	ata	Model
	1930	1940	1940
25-35	20.0	19.1	13.0
36-45	48.5	42.1	42.5
46-55	57.7	51.0	59.2
56-65	65.1	57.5	69.8
Total	48.1	42.7	43.5
с.		C. I	,

Source: US. Census Bureau

Model Predictions 1960: Ownership and Prices

Data	1940	1960	Δ
Ownership Rate (%)	42.5	63.5	21.0
House Price Index	100	43.0	43.0%

Model			
Ownership Rate (%)	43.5	64.5	21.0
House Prices	100	140.4	40.4

Model Predictions 1960: Ownership by Age

Model Prediction for Homeownership Rate 1940-60

	Data (%) Difference	Model (%) Difference
25-35	37.1	32.1
36-45	26.0	23.8
46-55	18.5	14.5
56-65	11.8	15.7
Total	21.0	21.0
	Courses	LIC Compute Durant

Source: US. Census Bureau

Model Mortgage Choice

Housing Finance (%)

Statistics	Model 1940	Model 1960
Homeownership rate	43.5	64.5
No Mortgage (%)	39.0	
Mortgage loan (%)	61.0	
Share balloon (5 year)	100.0	10.9
Share FRM (20 year)	0.0	89.1

The Importance of Productivity

Importance of Relative Productivity Change

Model: 1960	(HR)	(\mathbf{p}^{h})	´HR	Δp^h
$\Delta z_c > \Delta z_h$	64.5	140.2	21.5	40.2
$\Delta z_c = \Delta z_h$	53.5	106.4	10.2	6.4
$\Delta z_h = \Delta z_c$	74.7	111.6	31.4	11.6

Decomposition

Contribution	Ownership (%)	House Prices (%)
Demographics	5-8	1-2
Income risk	12-57	0-0.51
Govn't Policy	3-4	0-14
Housing finance	5-7	1-1.5

Conclusions

- The goal is to understand the driving forces in the postwar housing boom.
- We use a heterogenous general equilibrium model to measure the relative importance of prominently mentioned factors.
- The models suggests all factors play a significant role
 - House prices: Productivity is essential for house prices, the demand components account around 5-8
 - Ownership: Income, demographics, and government intervention in housing finance play are significant