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Parameters versus models

� Main idea: Allow agents to select forecasting models in
addition to recursive learning.

� Most of the action in actual economies?

� Appeal: Forecasters can �express doubt�about their
models, switch models.

� Mostly thinking in terms of non-nested models.
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Connections to escape dynamics

� Model validation would alter learning dynamics even in
economies where REE is unique and expectationally stable.

� The authors are interested in whether policymaker model
switching might induce escape dynamics ...

� ... and hence the regime switching we see in many
macroeconomic variables.

� Some examples maintain the possibility of escape, others
do not.
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Model validation

� A forecasting community entertains a menu of forecasting
models.

� Parameters are recursively updated ...

� ... and misspeci�cation tests based on the Kullback-Leibler
Information Criterion (KLIC) are carried out.

� Models can be discarded, replaced with alternatives, and
possibly reincarnated.

� Knowledge of the true data generating process is not
required. Multiple, misspeci�ed models can be compared.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Model validation

� A forecasting community entertains a menu of forecasting
models.

� Parameters are recursively updated ...

� ... and misspeci�cation tests based on the Kullback-Leibler
Information Criterion (KLIC) are carried out.

� Models can be discarded, replaced with alternatives, and
possibly reincarnated.

� Knowledge of the true data generating process is not
required. Multiple, misspeci�ed models can be compared.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Model validation

� A forecasting community entertains a menu of forecasting
models.

� Parameters are recursively updated ...

� ... and misspeci�cation tests based on the Kullback-Leibler
Information Criterion (KLIC) are carried out.

� Models can be discarded, replaced with alternatives, and
possibly reincarnated.

� Knowledge of the true data generating process is not
required. Multiple, misspeci�ed models can be compared.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Model validation

� A forecasting community entertains a menu of forecasting
models.

� Parameters are recursively updated ...

� ... and misspeci�cation tests based on the Kullback-Leibler
Information Criterion (KLIC) are carried out.

� Models can be discarded, replaced with alternatives, and
possibly reincarnated.

� Knowledge of the true data generating process is not
required. Multiple, misspeci�ed models can be compared.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Model validation

� A forecasting community entertains a menu of forecasting
models.

� Parameters are recursively updated ...

� ... and misspeci�cation tests based on the Kullback-Leibler
Information Criterion (KLIC) are carried out.

� Models can be discarded, replaced with alternatives, and
possibly reincarnated.

� Knowledge of the true data generating process is not
required. Multiple, misspeci�ed models can be compared.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Speci�cation testing

� The econometric speci�cation testing literature is large.

� But �endogenous data�generated from beliefs-outcomes
feedback makes application of statistical theory
problematic.

� Dominant recursive learning model has smallest
asymptotic rejection probability.

� Main result: The authors provide conditions under which
validation dynamics converge to the dominant recursive
learning model, which the agent then uses almost always.
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Assignment of the PLM

� Any assignment of the perceived law of motion (PLM) will
a¤ect system dynamics.

� Tradition: endow agents with a (locally) correctly
speci�ed, linear representation of the REE. It may not be
unique.

� In this paper, agents are endowed with multiple, simple,
misspeci�ed PLMs. Agents use endogenously generated
data to try to �nd the �best choice�among these, the
least falsi�able.

� Each model may induce a self-con�rming equilibrium.
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Nature of the validation dynamics

� An agent retains the current model unless it is rejected by
an appropriate test.

� A rejected model is replaced, and economic decisions are
made based on the forecasts from the new model.

� There is no �averaging�across models weighted by
measures of �t� instead there is classical rejection and
adherence to a new model.

� Facilitates regime-switching type outcomes?
� Maybe not: new model may not be very di¤erent from old
model.

� Asynchronous updating (p. 12). Agent may be unaware
that an alternative model is better until rejection of
current model occurs.
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Instability generated by rival models

� Expectational stability may fail to hold for some
misspeci�ed PLMs.

� The best �t model at t may be one which, if employed,
generates expectational instability. This model would
presumably eventually be rejected under the conditions of
the theorem.

� Subsequent attempts to �t the resulting data with other
models would be problematic.

� A general di¢ culty for validation dynamics is that models
are being �t to data generated by other models. A
policymaker that is learning would know this.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Instability generated by rival models

� Expectational stability may fail to hold for some
misspeci�ed PLMs.

� The best �t model at t may be one which, if employed,
generates expectational instability. This model would
presumably eventually be rejected under the conditions of
the theorem.

� Subsequent attempts to �t the resulting data with other
models would be problematic.

� A general di¢ culty for validation dynamics is that models
are being �t to data generated by other models. A
policymaker that is learning would know this.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Instability generated by rival models

� Expectational stability may fail to hold for some
misspeci�ed PLMs.

� The best �t model at t may be one which, if employed,
generates expectational instability. This model would
presumably eventually be rejected under the conditions of
the theorem.

� Subsequent attempts to �t the resulting data with other
models would be problematic.

� A general di¢ culty for validation dynamics is that models
are being �t to data generated by other models. A
policymaker that is learning would know this.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Instability generated by rival models

� Expectational stability may fail to hold for some
misspeci�ed PLMs.

� The best �t model at t may be one which, if employed,
generates expectational instability. This model would
presumably eventually be rejected under the conditions of
the theorem.

� Subsequent attempts to �t the resulting data with other
models would be problematic.

� A general di¢ culty for validation dynamics is that models
are being �t to data generated by other models. A
policymaker that is learning would know this.



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Arti�cial intelligence

� The ambitious goals reminiscent of economic applications
of classi�er systems and genetic algorithm learning from
the arti�cial intelligence literature:

� Many possible models in play.
� Agents make decisions based on their currently favored
model

� Heterogeneity among models in use.

� New models can be created via genetic operators.
� Evolutionary selection pressure keeps better models in
population.

� Population of models can eventually become homogeneous
and consistent with an SCE.

� Literature is simulation-based.
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Comparison with arti�cial intelligence

� Fitness criterion in AI approach plays role of KLIC. AIC
has interesting feature, �t versus parsimony.

� parsimony mitigates over�t
� in-sample versus out-of-sample forecasting
� problematic when data is generated with other models.

� Initial set of models important.

� AI approach conceives of evolving sets of models.
� Validation approach requires good models to be in the
initial set.

� Evolutionary dynamic not part of the story here.
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Statistical versus economic selection

� Authors use a statistically-based concept for model
selection.

� Natural part of the attempt to get econometricians into
the model.

� Utility-based criteria? Good �t may not imply good
decision-making.

� Cogley-Sargent (2004) story about Samuelson-Solow vs.
Lucas-Sargent. The decision-maker downweights the
evidence because of the economic consequences of
choosing the wrong model.

� Kocherlakota (2006): better �t not the same as better
model.
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Hypothesis testing

� Model k remains the model of choice for an extended
period.

� What economic advantage does the agent gain from
resistence to switching models?

� Why not simply adopt today�s best model?



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Hypothesis testing

� Model k remains the model of choice for an extended
period.

� What economic advantage does the agent gain from
resistence to switching models?

� Why not simply adopt today�s best model?



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Hypothesis testing

� Model k remains the model of choice for an extended
period.

� What economic advantage does the agent gain from
resistence to switching models?

� Why not simply adopt today�s best model?



Discussion of
Cho and Kasa,
�Validation.�

J. Bullard

Discussion
Parameters
versus models
Connections to
escape dynamics
Model validation
Speci�cation
testing
Assignment of
the PLM
Nature of the
validation
dynamics
Instability
generated by
rival models
Arti�cial
intelligence
Comparison with
arti�cial
intelligence
Statistical versus
economic
selection
Hypothesis
testing
Restricted
perceptions
example
Conquest
example
Conclusions

Restricted perceptions example

� Choice between two misspeci�ed models is made based on

H1 (β1) =

 
2 (1� α)

ηΣ1
�

β̄1
�! �β1 � β̄1

�2 (1)

H2 (β2) =

 
2 (1� α)

ηΣ2
�

β̄2
�! �β2 � β̄2

�2 (2)

� Dominant recursive learning model is the alternative with
smaller Σi . It �ts better.

� But this may not be the better restricted perceptions
equilibrium for household allocations.

� The agent may prefer to use an alternative model,
experience the RPE associated with that model, and adopt
that.
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Conquest example

� Parsimony favors the static reference model. Switch to it
near the SCE.

� Dynamic model superior outside the SCE, which is most of
the time.

� The switch to the static model is reminiscent of Brock and
Hommes (1997).

� Parsimony a key ingredient in this story. Something to
hang our hats on?
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Conclusions

� A fascinating paper.

� Authors make some progress on the analytics of validation
dynamics.

� Realism is compelling, but raises lots of questions.

� �Minimal deviation from rational expectations�has been a
valuable feature of the recursive learning literature.

� Doing more than a �minimal deviation from rational
expectations�?
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